Развитие технологий:
Микропроцессор Intel 80286В 1982 году фирма Intel выпустила новый микропроцессор Intel 80286, который имел 134 тыс. транзисторов и был разработан по 1,5 ми... |
Компьютеры первого поколения (1950-1960)Первые коммерчески доступные компьютеры появились в начале 50-х годов прошлого века (до этого вычислительные устройства имели скорее научное, нежели прикладное ... |
Популярные
- Найм подходящей компании SEO для вашего бизнеса
- Расширение сотрудничества между Cisco и МГУУ Правительства Москвы
- Технология шлюзов Oracle. Характеристика продуктов
- Перспективы развития компьютерной техники
- Основные направления развития компьютерной индустрии в ближайшем будущем в рамках форума IDF
- Вычислительное ядро
Цифровые процессоры обработки сигналов |
Это интересно - Технологии |
Сегодня уже забылись популярные в середине восьмидесятых годов среди электронщиков разговоры о степени отставания советской электроники от западной. Тогда судили о степени развития электроники по развитию процессоров к персональным компьютерам. Железный занавес делал свое дело, мы тогда даже не могли представить, что советская электроника отстала от западной не на год или два, а навсегда. Простые советские инженеры, не допущенные на крупнейшие мировые профессиональные семинары по электронике и не посвященные в тайны, разведанные КГБ, могли судить о развитии электроники по программе Время и по голливудским фильмам десятилетней давности. После восторгов об электронных штучках Джеймсов Бондов делалось заключение, что: все это спецэффекты кинематографа; все создано на специализированных микропроцессорах (никогда не уточнялось, на каких); и что у нас, где надо и у кого надо есть вещи и покруче . После таких глубокомысленных выводов советские инженеры с новым творческим порывом в своих НИИ продолжали создавать шедевры на 155-х ТТЛ-микросхемах, или, самые приближенные к военно-промышленному комплексу, на 133-й серии. К своему стыду, должен признаться, что я также, примерно до середины девяностых годов, подразумевал, что специализированные процессоры - нечто совершенно сложное и невообразимое. Но, к счастью, времена изменились, и первыми специализированными процессорами, с которыми мне довелось познакомиться, стали процессоры цифровой обработки сигналов или сигнальные процессоры (ЦСП, DSP - Digital Signal Processor). Сигнальные процессоры появились как следствие развития цифровых технологий, которые все шире внедрялись в традиционные аналоговые приложения: радио - и проводная связь, видео - и аудиотехника, измерительные и бытовые приборы. Создания специализированных процессоров для обработки сигналов требовали и чисто цифровые устройства: модемы, дисковые накопители, системы обработки данных и т.д. Главная отличительная черта ЦСП от обычных микропроцессоров - максимальная приспособленность к решению задач цифровой обработки сигналов. Это именно специализированные контроллеры, специализация которых заключается в такой архитектуре и системе команд, которые позволяли бы оптимально выполнять операции преобразования и фильтрации сигналов в режиме реального времени. У обычных микроконтроллеров команды, выполняющие такие операции, или вообще не предусмотрены, или их работа весьма медленна, что не дает возможности их использования в критичных по скорости процессах. Поэтому применение традиционных микропроцессоров вело, с одной стороны, к неоправданному усложнению и удорожанию схемного решения устройства, с другой - к неэффективному, однобокому использованию возможностей контроллера. ЦСП были призваны решить это противоречие и прекрасно со своей задачей справились. Сигнальные процессоры появились в начале 80-х годов. Первым широко известным сигнальным процессором стал выпущенный в 1982 году фирмой Texas Instruments ЦСП TMS32010, с производительностью в несколько MIPS (миллионов инструкций в секунду), созданный по 1,2 мкм технологии. Вслед за Texas Instruments ЦСП стали выпускать и другие фирмы. В настоящее время Texas Instruments является лидером по производству ЦСП, ей принадлежит около половины рынка этих контроллеров. Вторым по величине производителем ЦСП является компания Lucent Technologies, которая производит около трети этих устройств. Замыкают четверку лидеров Analog Devices и Motorola, имеющие примерно равную долю рынка и выпускающие вместе примерно четверть всех ЦСП. На долю остальных производителей, хотя среди них находятся такие известные фирмы, как Samsung, Zilog, Atmel и другие, приходятся оставшиеся 5-6 процентов рынка сигнальных процессоров. Понятно, что законодателями мод среди производителей являются компании-лидеры в этой области и, в первую очередь Texas Instruments. Политика компаний лидеров при производстве и продвижении сигнальных процессоров существенно разнится. Texas Instruments ставит задачу производства максимально широкого ассортимента, способного перекрыть все возможные применения процессоров при все большей производительности. В настоящее время производительность сигнальных процессоров достигает до 8800 MIPS, и производятся они по технологии от 0,65 мкм до 0,1 мкм. Тактовая частота достигает 1,1 ГГц. Lucent Technologies ориентируется на крупных производителей конечного оборудования и предлагает свою продукцию через дистрибьюторскую сеть, не прибегая к широкой рекламной компании. Фирма специализируется на ЦСП для телекоммуникационного оборудования, в частности, в таком перспективном в настоящее время направлении, как создание станций сотовой связи. Analog Devices, напротив, ведет активную маркетинговую политику и рекламную компанию, о чем свидетельствует хотя бы аббревиатура в названии ЦСП этой фирмы SHARK и Tiger SHARK (акула и тигровая акула). В технической области процессоры этой фирмы оптимизированы по энергопотреблению и для построения многопроцессорных систем. Motorola распространяет свои процессоры, широко используя собственную разветвленную дистрибьюторскую сеть. В архитектуре ЦСП Motorola первой пошла по пути создания на одном кристалле одновременно сигнального процессора и классического микроконтроллера, которые работают как одна система, что значительно облегчает жизнь разработчикам оборудования, упрощая схемное решение. Архитектура и технологии изготовления ЦСП уже разработаны достаточно хорошо, однако требования устойчивости работы и точности вычислений ЦСП приводят к тому, что не удается избавиться от высокой сложности функциональных устройств, выполняющих обработку данных (особенно в формате с плавающей точкой), что не позволяет существенно снизить издержки при производстве процессоров. Стоимость ЦСП может колебаться от 2 до 180 и более долларов за единицу. Характеристики ЦСП-процессоров Отличительными особенностями характеристик сигнальных процессоров являются высокоскоростная арифметика, передача и получение данных в реальном времени и архитектура памяти с множественным доступом. Любое арифметическое действие в процессе выполнения требует следующих элементарных операций: выборки операндов; выполнения сложения или умножения; сохранения результата или его повторения. Кроме того, в процессе вычислений требуются задержки, выборки значений из последовательных ячеек памяти и копирование данных из памяти в память. В сигнальных процессорах повышение скорости выполнения арифметических операций достигается за счет: параллельного выполнения действий, множественного доступа к памяти (выборка двух операндов и сохранение результата), наличия большого числа регистров для временного хранения данных, аппаратной реализации специальных возможностей: осуществление задержек, умножителей, кольцевой адресации и т.д. В сигнальных процессорах реализуется также аппаратная поддержка программных циклов, кольцевых буферов, возможность извлечения из памяти одновременно нескольких операндов в цикле исполнения команды. Главным достоинством и отличием между ЦСП и универсальными микропроцессорами является то, что процессор взаимодействует со многими источниками данных в реальном мире. Процессор может получать и передавать данные в реальном времени, не прерывая при этом выполнение внутренних математических операций. Для этих целей непосредственно в чип встраивают аналогоцифровые и цифро-аналоговые преобразователи, генераторы, декодеры и другие устройства непосредственного общения с внешним миром. Построение памяти с множественным доступом достигается, в основном, за счет применения Гарвардской архитектуры. Под Гарвардской архитектурой понимается такая архитектура, которая имеет две физически разделенные шины данных, что позволяет осуществить два доступа к памяти одновременно. Но для выполнения DSP-операций только этого недостаточно, особенно при использовании в команде двух операндов. Поэтому Гарвардская архитектура добавляется еще кэш-памятью, для хранения тех инструкций, которые будут использоваться вновь. При использовании кэш-памяти шина адреса и шина данных остаются свободными, что делает возможным выборку двух операндов. Такое расширение - Гарвардская архитектура плюс кэш - называют расширенной Гарвардской архитектурой или SHARC (Super Harvard ARChitecture). Конкретные характеристики ЦСП рассмотрим на семействе DSP568xx компании Motorola, в которых совмещены особенности цифровых сигнальных процессоров и универсальных микроконтроллеров. Ядро DSP56800 является программируемым 16-разрядным КМОП-процессором, предназначенным для выполнения цифровой обработки сигналов в реальном масштабе времени и решения вычислительных задач, и состоит из четырех функциональных устройств: управления, генерации адресов, АЛУ, обработки битов. Для увеличения производительности операции в устройствах выполняются параллельно. Каждое из устройств может функционировать независимо и одновременно с тремя другими, т.к. имеет свой набор регистров и логику управления. Ядро реализует одновременное выполнение нескольких действий: устройство управления выбирает первую команду, устройство генерации адресов формирует их адреса второй команды, а АЛУ выполняет умножение третьей команды. Широко используются совмещенные передачи и выполнение операций. Встроенная память может содержать (для семейства): - Флэш-память программ до 60К - Флэш-память данных до 8К - ОЗУ-программ до 2К - ОЗУ-данных до 4К - Флэш-память программы загрузки 2К На микрочипах семейства реализовано большое количество периферийных устройств: ШИМ-генераторы, 12-разрядные АЦП с одновременной выборкой, квадратурные декодеры, четырехканальные таймеры, контроллеры CAN-интерфейса, двухпроводные последовательные коммуникационные интерфейсы, последовательные интерфейсы, программируемый генератор с ФАПЧ для формирования тактовой частоты ядра DSP и др. Общие характеристики - производительность 40 MIPS при тактовой частоте 80 МГц и напряжении питания 2.7:3.6 В; - однотактный параллельный 16х16 умножитель-сумматор; - два 36-разрядных аккумулятора, включая биты расширения; - однотактное 16-разрядное устройство циклического сдвига; - аппаратная реализация команд DO и REP; - три внутренние 16-разрядные шины данных и три 16-разрядные шины адреса; - одна 16-разрядная шина внешнего интерфейса; - стек подпрограмм и прерываний, не имеющий ограничения по глубине. Микросхемы семейства DSP568хх предназначены для применения в недорогих устройствах, бытовой технике, для которой необходима низкая стоимость и не требуются сверхвысокие параметры: проводные и беспроводные модемы, системы беспроводной передачи цифровых сообщений, цифровые телефонные автоответчики, цифровые камеры, специализированные и многоцелевые контроллеры, устройства управления серводвигателями и электродвигателями переменного тока. В общем случае сигнальные процессоры уже достигли такой стадии своего развития, что могут применяться в устройствах, находящихся от космических станций до детских игрушек. Насколько неожиданными могут быть применения сигнальных процессоров, мне пришлось не так давно убедиться именно на примере игрушки. Однажды ко мне обратился знакомый и попросил починить говорящую куклу, которую подарили его дочери немецкие знакомые. Кукла, и правда, была замечательной, по словам знакомого, она понимала до полусотни фраз и сознательно поддерживала разговор. В Германии стоила сто пятьдесят марок, что навело меня на размышления, что о поломке куклы более жалеют родители, чем их чадо. Дочурка и так любила куклу, тем более что до того как стать немой, та разговаривала на немецком языке. Без всякой надежды на успех взялся я за ремонт этой куклы. Напильником спилил эпоксидную смолу, которой была залита схема и, под толстым-толстым слоем эпоксидки, обнаружил полдесятка корпусов микросхем, центральным из которых был ЦСП к DSP56F... последние цифры, к сожалению, безвозвратно стерлись. Заставить куклу заговорить так и не удалось, и насколько добавлял ей интеллекта сигнальный процессор, я, увы, так и не определил. Как потом оказалось, старший сын моих знакомых, чтобы заставить куклу кричать погромче, вначале подсоединял к ней напряжение вместо 3 в, 4,5 вольта, что было еще не смертельно , и игрушка хоть и хрипела, но орала, ну а после 220в... . Отсюда первый вывод - высокие технологии хороши, но не всегда и не везде. Вывод второй - вскоре, возможно, ЦСП мы сможем увидеть в кухонной посуде, обуви и одежде, по крайней мере, технических препятствий к тому нет. |
Читайте: |
---|